DC on the Mains.

Power supplies in Hi-Fi and AV equipment often assume connection to a perfect mains supply. In theory the mains waveform should be pure AC: a perfect, symmetrical sine wave. Many of the myriad appliances connected to the supply, at home and in industry; from electronic dimmers to computer power supplies, use the AC energy available in a mains cycle unevenly. The net result is the effective addition of DC to the mains network.

This effect is inevitable and also inherently unpredictable. In practice the waveform can arrive at the end-user clipped, distorted and asymmetric. Simplistic analyses of unmatched peak voltages are not the whole story: Any AC waveform which does not have equal energy in both positive and negative phases will contain a DC component; regardless of what the peak voltages are or what the wave shape is.

The AC transformers commonly found in audio equipment cannot, by nature, tolerate significant DC without being compromised.

As all transformers convert power through the medium of magnetism, any DC present will inhibit its capacity to transform AC by partially or completely saturating the magnetic circuit. It is this vulnerability to DC that causes acoustic hum and significantly reduces the transformer's power capacity. Even measured at comparatively low levels we have found that this has a significant negative impact on the following power supply and circuit performance, which in turn can degrade sound quality.

The graph is an illustration of an imperfect mains waveform before processing by the Axis circuit:


DC on mains before

The ISOL-8 Axis circuit re-balances the energy axis of the mains waveform without restricting the effective current capacity. This eliminates any DC voltage on the mains power supply, suppressing acoustic hum and liberating system performance.

Waveform after processing by the Axis circuit:


DC on mains after

© 2018 ISOL-8 Teknologies Ltd. Tel: 020 8856 8856

Where to buy
Technical info
Types of Noise
Why Condition your Mains Supply
Cross Contamination Explained
DC on the Mains
Transmodal Technology Explained
News & Reviews
About Us
Site Map